Invariants of the velocity-gradient tensor in a spatially developing inhomogeneous turbulent flow

Author:

Buxton O. R. H.ORCID,Breda M.,Chen X.

Abstract

Tomographic particle image velocimetry experiments were performed in the near field of the turbulent flow past a square cylinder. A classical Reynolds decomposition was performed on the resulting velocity fields into a time invariant mean flow and a fluctuating velocity field. This fluctuating velocity field was then further decomposed into coherent and residual/stochastic fluctuations. The statistical distributions of the second and third invariants of the velocity-gradient tensor were then computed at various streamwise locations, along the centreline of the flow and within the shear layers. These invariants were calculated from both the Reynolds-decomposed fluctuating velocity fields and the coherent and stochastic fluctuating velocity fields. The range of spatial locations probed incorporates regions of contrasting flow physics, including a mean recirculation region and separated shear layers, both upstream and downstream of the location of peak turbulence intensity along the centreline. These different flow physics are also reflected in the velocity gradients themselves with different topologies, as characterised by the statistical distributions of the constituent enstrophy and strain-rate invariants, for the three different fluctuating velocity fields. Despite these differing flow physics the ubiquitous self-similar ‘tear drop’-shaped joint probability density function between the second and third invariants of the velocity-gradient tensor is observed along the centreline and shear layer when calculated from both the Reynolds decomposed and the stochastic velocity fluctuations. These ‘tear drop’-shaped joint probability density functions are not, however, observed when calculated from the coherent velocity fluctuations. This ‘tear drop’ shape is classically associated with the statistical distribution of the velocity-gradient tensor invariants in fully developed turbulent flows in which there is no coherent dynamics present, and hence spectral peaks at low wavenumbers. The results presented in this manuscript, however, show that such ‘tear drops’ also exist in spatially developing inhomogeneous turbulent flows. This suggests that the ‘tear drop’ shape may not just be a universal feature of fully developed turbulence but of turbulent flows in general.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3