An impulse-based approach to estimating forces in unsteady flow

Author:

Graham W. R.ORCID,Pitt Ford C. W.,Babinsky H.

Abstract

The ready availability of full-field velocity measurements in present-day experiments has kindled interest in using such data for force estimation, especially in situations where direct measurements are difficult. Among the methods proposed, a formulation based on impulse is attractive, for both practical and physical reasons. However, evaluation of the impulse requires a complete description of the vorticity field, and this is particularly hard to achieve in the important region close to a body surface. This paper presents a solution to the problem. The incomplete experimental-vorticity field is augmented by a vortex sheet on the body, with strength determined by the no-slip boundary condition. The impulse is then found from the sum of vortex-sheet and experimental contributions. Components of physical interest can straightforwardly be recognised; for example, the classical ‘added mass’ associated with fluid inertia is represented by an explicit term in the formulation for the vortex sheet. The method is implemented in the context of two-dimensional flat-plate flow, and tested on velocity-field data from a translating wing experiment. The results show that the vortex-sheet contribution is significant for the test data set. Furthermore, when it is included, good agreement with force-balance measurements is found. It is thus recommended that any impulse-based force calculation should correct for (likely) data incompleteness in this way.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3