Statistics of fully turbulent impinging jets

Author:

Wilke RobertORCID,Sesterhenn Jörn

Abstract

Direct numerical simulations (DNS) of subsonic and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties with respect to heat transfer. The Reynolds number range is at low or moderate values in terms of practical applications, but very high regarding the technical possibilities of DNS. A Reynolds number of 8000 is technically relevant for the cooling of turbine blades. In this case, the flow is dominated by primary and secondary vortex rings. Statistics of turbulent heat fluxes and Reynolds stresses as well as the Nusselt number are provided and brought into accordance with these vortices. Velocity and temperature fluctuations were found to have a positive influence on cooling of the impinging plate. Beside the description of the flow, a second aim of this article is the provision of data for improvement of turbulence models. Modern large eddy simulations are still not able to precisely predict impingement heat transfer (Dairay et al., Intl J. Heat Fluid Flow, vol. 50 (0), 2014, pp. 177–187). Common relations between heat and mass transfer respectively temperature and velocity fields are applied to the impinging jet. These relations include the Reynolds and Chilton Colburn analogy, the Crocco–Busemann relation and the generalised Reynolds analogy (GRA). It was found that the first two deliver useful values if the distance to the jet axis is larger than one diameter, away from the strong pressure gradient around the stagnation point. The GRA, in contrast, precisely predicts the mean temperature field if no axial velocity gradient is present. The estimation of temperature fluctuations according to the GRA fails. As third main topic of this article, the influence of the Mach number on heat transfer and the flow field, is studied. Against the common practise of neglecting compressibility effects in experimental Nusselt correlations, we observed that higher Mach numbers (up to 1.1) have a positive influence on heat transfer in the deflection zone due to higher flow fluctuations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference35 articles.

1. A generalized Reynolds analogy for compressible wall-bounded turbulent flows

2. Moser, R. D.  & Moin, P. 1984 Direct numerical simulation of curved turbulent channel flow. NASA, Ames Research Center.

3. Large-eddy simulation of flow and heat transfer in an impinging slot jet

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3