Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities

Author:

Medjnoun T.ORCID,Vanderwel C.ORCID,Ganapathisubramani B.

Abstract

An experimental investigation of a turbulent boundary-layer flow over a heterogeneous surface is carried out to examine the mean flow and turbulence characteristics, and to document the variation of skin friction that might affect the applicability of traditional scaling and similarity laws. The heterogeneity is imposed along the spanwise direction and consists of streamwise-aligned smooth raised strips whose spanwise spacing $S$ is comparable to the boundary-layer thickness ($S/\unicode[STIX]{x1D6FF}=O(1)$). Single-point velocity measurements alongside direct skin-friction measurements are used to examine the validity of Townsend’s similarity hypothesis. The skin-friction coefficients reveal that the drag of the heterogeneous surface increased up to 35 % compared to a smooth wall, while velocity measurements reveal the existence of a log layer but with a zero-plane displacement and a roughness function that vary across the spanwise direction. Lack of collapse in the outer region of the mean velocity and variance profiles is attributed to the secondary flows induced by the heterogeneous surfaces. Additionally, the lack of similarity also extends to the spectra across all scales in the near-wall region with a gradual collapse at small wavelengths for increasing $S$. This suggests that the effect of surface heterogeneity is not necessarily felt at the smaller scales other than to reorganise their presence through turbulent transport.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3