Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm

Author:

Yao W.,Jaiman R. K.ORCID

Abstract

We present an active feedback blowing and suction (AFBS) procedure via model reduction for unsteady wake flow and the vortex-induced vibration (VIV) of circular cylinders. The reduced-order model (ROM) for the AFBS procedure is developed by the eigensystem realization algorithm (ERA), which provides a low-order representation of the unsteady flow dynamics in the neighbourhood of the equilibrium steady state. The actuation is considered via vertical suction and a blowing jet at the porous surface of a circular cylinder with a body-mounted force sensor. While the optimal gain is obtained using a linear quadratic regulator (LQR), Kalman filtering is employed to estimate the approximate state vector. The feedback control system shifts the unstable eigenvalues of the wake flow and the VIV system to the left half-complex-plane, and subsequently results in suppression of the vortex street and the VIV in elastically mounted structures. The resulting controller designed by a linear low-order approximation is able to suppress the nonlinear saturated state of wake vortex shedding from the circular cylinder. A systematic linear ROM-based stability analysis is performed to understand the eigenvalue distribution for the flow past stationary and elastically mounted circular cylinders. The results from the ROM analysis are consistent with those obtained from full nonlinear fluid–structure interaction simulations, thereby confirming the validity of the proposed ROM-based AFBS procedure. A sensitivity study on the number of suction/blowing actuators, the angular arrangement of actuators and the combined versus independent control architectures has been performed for the flow past a stationary circular cylinder. Overall, the proposed control concept based on the ERA-based ROM and the LQR algorithm is found to be effective in suppressing the vortex street and the VIV for a range of reduced velocities and mass ratios.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3