Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling

Author:

Schremb MarkusORCID,Roisman Ilia V.ORCID,Tropea Cameron

Abstract

The present study is devoted to the experimental investigation and theoretical modelling of the interaction between fluid flow and solidification during the impact of supercooled water drops onto an ice surface. Using a high-speed video system, the impact process is captured with a high spatial and temporal resolution in a side view. The lamella thinning and the residual ice layer thickness in the centre of impact are determined from the high-speed videos for varying drop and surface temperatures, and impact velocities. It is shown that the temperature of the impact surface has a negligible influence and the drop temperature has a dominating influence on the lamella thinning and the final ice layer thickness. For decreasing drop temperatures, higher freezing rates cause a decreased rate of lamella thinning and a larger thickness of the resulting ice layer. On the other hand, a higher impact velocity causes an increasing speed of lamella thinning and a smaller thickness of the resulting ice layer. Based on a postulated flow in the spreading lamella and considering the ice layer growth and the developing viscous boundary layer, the upper limit for the resulting ice layer thickness is theoretically modelled. The theory shows very good agreement with the experimental results for all impact conditions. Based on the derived theoretical scaling, a semi-empirical equation is obtained which allows an a priori prediction of the final ice layer thickness resulting from a single drop impact, knowing the impact conditions. This capability is important for the improvement of existing ice accretion models.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3