Wind farm power fluctuations and spatial sampling of turbulent boundary layers

Author:

Bossuyt JuliaanORCID,Meneveau CharlesORCID,Meyers JohanORCID

Abstract

The fluctuations in power output from wind farms display significantly reduced spectra compared to single wind turbines due to power smoothing and averaging. In order to better understand these spectral features and to relate them to properties of turbulent boundary layers, we perform a wind tunnel experiment in which we measure spatio-temporal characteristics of an experimental surrogate of the power output from a micro wind farm with 100 porous disk models. The experimental results show that the frequency spectrum of the total wind farm power follows a power law with a slope between $-5/3$ and $-2$, and up to lower frequencies than seen for any individual turbine model. In agreement with previous studies in the literature, peaks in the spectrum are observed at frequencies corresponding to the mean flow convection time between consecutive turbines. In the current work we interpret the sum of power extraction from an array of turbines as a discrete spatial filtering of a turbulent boundary layer and derive the associated transfer function. We apply it to an existing model for the wavenumber–frequency spectrum of turbulent boundary layers. This approach allows us to verify the individual roles of Doppler shift and broadening of frequencies on the resulting spatially sampled frequency spectrum. Comparison with the wind tunnel data confirms that the approach captures and explains the main features in the spectrum, indicating the crucial role of the interaction between the spatial sampling and the space–time correlations inherently present in the flow. The frequency spectrum of the aggregated power from a wind farm thus depends on both the spectrum of the incoming turbulence and its modulation by the spatial distribution of turbines in the boundary layer flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3