Dispersion of solute released from a sphere flowing in a microchannel

Author:

Gekle StephanORCID

Abstract

A solute is released from the surface of a sphere flowing freely in a cylindrical channel mimicking a modern drug delivery agent in a blood vessel. The solute then disperses by the combined action of advection and diffusion. We consider reflecting boundary conditions on the sphere and absorbing boundary conditions on the channel surface mimicking a biochemical reaction between the drug and endothelial cells on the vessel surface. The drug is released either instantaneously or continuously in time. The two key observables are the mean residence time in the flow before the drug is absorbed and the width over which it is spread on the vessel surface upon reaction. We numerically solve the Fokker–Planck equation for the time-dependent substance concentration combined with an analytical solution of the flow field. As expected, we find that the presence of the sphere leads to a substantial reduction in mean residence time and reaction width. Surprisingly, however, even in the limit of very large Péclet numbers (high velocities) the sphere-free case is not generally recovered. This observation can be attributed mainly to the small, but non-negligible radial flow component induced by the moving sphere. We further identify a strong influence of the release position which sharply separates two qualitatively different regimes. If the release position is between $\unicode[STIX]{x1D703}_{0}=0$ (front) and a critical $\unicode[STIX]{x1D703}_{c}$ the substance is quickly advected away from the sphere and its overall behaviour is similar to free diffusion in an empty channel. For release between $\unicode[STIX]{x1D703}_{c}$ and $\unicode[STIX]{x1D703}_{0}=\unicode[STIX]{x03C0}$ (tail), on the other hand, the substance is pushed towards the sphere leading to behaviour reminiscent of confined diffusion between two infinitely long cylinders. The critical position $\unicode[STIX]{x1D703}_{c}$ is generally smaller than $\unicode[STIX]{x03C0}/2$ which would correspond to an equatorial release position.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3