Inviscid instabilities in rotating ellipsoids on eccentric Kepler orbits

Author:

Vidal JérémieORCID,Cébron DavidORCID

Abstract

We consider the hydrodynamic stability of homogeneous, incompressible and rotating ellipsoidal fluid masses. The latter are the simplest models of fluid celestial bodies with internal rotation and subjected to tidal forces. The classical problem is the stability of Roche–Riemann ellipsoids moving on circular Kepler orbits. However, previous stability studies have to be reassessed. Indeed, they only consider global perturbations of large wavelength or local perturbations of short wavelength. Moreover many planets and stars undergo orbital motions on eccentric Kepler orbits, implying time-dependent ellipsoidal semi-axes. This time dependence has never been taken into account in hydrodynamic stability studies. In this work we overcome these stringent assumptions. We extend the hydrodynamic stability analysis of rotating ellipsoids to the case of eccentric orbits. We have developed two open-source and versatile numerical codes to perform global and local inviscid stability analyses. They give sufficient conditions for instability. The global method, based on an exact and closed Galerkin basis, handles rigorously global ellipsoidal perturbations of unprecedented complexity. Tidally driven and libration-driven elliptical instabilities are first recovered and unified within a single framework. Then we show that new global fluid instabilities can be triggered in ellipsoids by tidal effects due to eccentric Kepler orbits. Their existence is confirmed by a local analysis and direct numerical simulations of the fully nonlinear and viscous problem. Thus a non-zero orbital eccentricity may have a strong destabilising effect in celestial fluid bodies, which may lead to space-filling turbulence in most of the parameters range.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relativistic Roche problem for stars in precessing orbits around a spinning black hole;Physical Review D;2024-08-26

2. Resonant and non-resonant flows in longitudinally and latitudinally librating spheres;Physics of Fluids;2023-07-01

3. Precession-driven flows in stress-free ellipsoids;Journal of Fluid Mechanics;2022-12-23

4. Core Eigenmodes and their Impact on the Earth’s Rotation;Surveys in Geophysics;2021-11-10

5. Kinematic dynamos in triaxial ellipsoids;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3