Unsteady propulsion by an intermittent swimming gait

Author:

Akoz EmreORCID,Moored Keith W.ORCID

Abstract

Inviscid computational results are presented on a self-propelled swimmer modelled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (Proc. R. Soc. Lond. B, vol. 179, 1971, pp. 125–138) originally proposed that this burst-and-coast behaviour can save fish energy during swimming by taking advantage of the viscous Bone–Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added-mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, $DC$, of locomotion. This mechanism can save intermittent swimmers as much as 60 % of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, $Li$, and switch to an energetic cost above continuous swimming for sufficiently low $DC$. Intermittent swimmers are observed to shed four vortices per cycle that give rise to an asymmetric time-averaged jet structure with both momentum surplus and deficit branches. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3 % and 18 % of their full-scale values by using these relations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3