Abstract
Vorticity distributions in axisymmetric vortex rings produced by a piston–pipe apparatus are numerically studied over a range of Reynolds numbers, $Re$, and stroke-to-diameter ratios, $L/D$. It is found that a state of advective balance, such that $\unicode[STIX]{x1D701}\equiv \unicode[STIX]{x1D714}_{\unicode[STIX]{x1D719}}/r\approx F(\unicode[STIX]{x1D713},t)$, is achieved within the region (called the vortex ring bubble) enclosed by the dividing streamline. Here $\unicode[STIX]{x1D701}\equiv \unicode[STIX]{x1D714}_{\unicode[STIX]{x1D719}}/r$ is the ratio of azimuthal vorticity to cylindrical radius, and $\unicode[STIX]{x1D713}$ is the Stokes streamfunction in the frame of the ring. Some, but not all, of the $Re$ dependence in the time evolution of $F(\unicode[STIX]{x1D713},t)$ can be captured by introducing a scaled time $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D708}t$, where $\unicode[STIX]{x1D708}$ is the kinematic viscosity. When $\unicode[STIX]{x1D708}t/D^{2}\gtrsim 0.02$, the shape of $F(\unicode[STIX]{x1D713})$ is dominated by the linear-in-$\unicode[STIX]{x1D713}$ component, the coefficient of the quadratic term being an order of magnitude smaller. An important feature is that, as the dividing streamline ($\unicode[STIX]{x1D713}=0$) is approached, $F(\unicode[STIX]{x1D713})$ tends to a non-zero intercept which exhibits an extra $Re$ dependence. This and other features are explained by a simple toy model consisting of the one-dimensional cylindrical diffusion equation. The key ingredient in the model responsible for the extra $Re$ dependence is a Robin-type boundary condition, similar to Newton’s law of cooling, that accounts for the edge layer at the dividing streamline.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献