Boundary-layer development and gravity waves in conventionally neutral wind farms

Author:

Allaerts Dries,Meyers Johan

Abstract

While neutral atmospheric boundary layers are rare over land, they occur frequently over sea. In these cases they are almost always of the conventionally neutral type, in which the neutral boundary layer is capped by a strong inversion layer and a stably stratified atmosphere aloft. In the current study, we use large-eddy simulations (LES) to investigate the interaction between a large wind farm that has a fetch of 15 km and a conventionally neutral boundary layer (CNBL) in typical offshore conditions. At the domain inlet, we consider three different equilibrium CNBLs with heights of approximately 300 m, 500 m and 1000 m that are generated in a separate precursor LES. We find that the height of the inflow boundary layer has a significant impact on the wind farm flow development. First of all, above the farm, an internal boundary layer develops that interacts downwind with the capping inversion for the two lowest CNBL cases. Secondly, the upward displacement of the boundary layer by flow deceleration in the wind farm excites gravity waves in the inversion layer and the free atmosphere above. For the lower CNBL cases, these waves induce significant pressure gradients in the farm (both favourable and unfavourable depending on location and case). A detailed energy budget analysis in the turbine region shows that energy extracted by the wind turbines comes both from flow deceleration and from vertical turbulent entrainment. Though turbulent transport dominates near the end of the farm, flow deceleration remains significant, i.e. up to 35 % of the turbulent flux for the lowest CNBL case. In fact, while the turbulent fluxes are fully developed after eight turbine rows, the mean flow does not reach a stationary regime. A further energy budget analysis over the rest of the CNBL reveals that all energy available at turbine level comes from upwind kinetic energy in the boundary layer. In the lower CNBL cases, the pressure field induced by gravity waves plays an important role in redistributing this energy throughout the farm. Overall, in all cases entrainment at the capping inversion is negligible, and also the work done by the mean background pressure gradient, arising from the geostrophic balance in the free atmosphere, is small.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference99 articles.

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3