Abstract
The problem of orthogonal penetration of a blade into the core of a vortex with non-zero axial flow was studied using a combination of scaling theory, a heuristic plug-flow model and full Navier–Stokes simulations. The particular focus of this paper was to understand the mechanics of the transient lift force that occurs during the initial penetration of the blade leading edge into the vortex core, and the relationship of this transient force to the steady-state lift force that develops due to the difference in vortex core radius over the blade surface. The three modelling approaches all lead to the conclusion that the maximum value of the lift coefficient for the transient blade penetration force is proportional to the impact parameter and inversely proportional to the axial flow parameter. This observation is used to develop a simple expression that collapses the predictions of the full Navier–Stokes simulations for lift coefficient over a wide range of parameter values.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献