On the propagation of gravity currents over and through a submerged array of circular cylinders

Author:

Zhou Jian,Cenedese Claudia,Williams Tim,Ball Megan,Venayagamoorthy Subhas K.ORCID,Nokes Roger I.ORCID

Abstract

The propagation of full-depth lock-exchange bottom gravity currents past a submerged array of circular cylinders is investigated using laboratory experiments and large eddy simulations. Firstly, to investigate the front velocity of gravity currents across the whole range of array density $\unicode[STIX]{x1D719}$ (i.e. the volume fraction of solids), the array is densified from a flat bed ($\unicode[STIX]{x1D719}=0$) towards a solid slab ($\unicode[STIX]{x1D719}=1$) under a particular submergence ratio $H/h$, where $H$ is the flow depth and $h$ is the array height. The time-averaged front velocity in the slumping phase of the gravity current is found to first decrease and then increase with increasing $\unicode[STIX]{x1D719}$. Next, a new geometrical framework consisting of a streamwise array density $\unicode[STIX]{x1D707}_{x}=d/s_{x}$ and a spanwise array density $\unicode[STIX]{x1D707}_{y}=d/s_{y}$ is proposed to account for organized but non-equidistant arrays ($\unicode[STIX]{x1D707}_{x}\neq \unicode[STIX]{x1D707}_{y}$), where $s_{x}$ and $s_{y}$ are the streamwise and spanwise cylinder spacings, respectively, and $d$ is the cylinder diameter. It is argued that this two-dimensional parameter space can provide a more quantitative and unambiguous description of the current–array interaction compared with the array density given by $\unicode[STIX]{x1D719}=(\unicode[STIX]{x03C0}/4)\unicode[STIX]{x1D707}_{x}\unicode[STIX]{x1D707}_{y}$. Both in-line and staggered arrays are investigated. Four dynamically different flow regimes are identified: (i) through-flow propagating in the array interior subject to individual cylinder wakes ($\unicode[STIX]{x1D707}_{x}$: small for in-line array and arbitrary for staggered array; $\unicode[STIX]{x1D707}_{y}$: small); (ii) over-flow propagating on the top of the array subject to vertical convective instability ($\unicode[STIX]{x1D707}_{x}$: large; $\unicode[STIX]{x1D707}_{y}$: large); (iii) plunging-flow climbing sparse close-to-impermeable rows of cylinders with minor streamwise intrusion ($\unicode[STIX]{x1D707}_{x}$: small; $\unicode[STIX]{x1D707}_{y}$: large); and (iv) skimming-flow channelized by an in-line array into several subcurrents with strong wake sheltering ($\unicode[STIX]{x1D707}_{x}$: large; $\unicode[STIX]{x1D707}_{y}$: small). The most remarkable difference between in-line and staggered arrays is the non-existence of skimming-flow in the latter due to the flow interruption by the offset rows. Our analysis reveals that as $\unicode[STIX]{x1D719}$ increases, the change of flow regime from through-flow towards over- or skimming-flow is responsible for increasing the gravity current front velocity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3