Initial development of a free-surface wall jet at moderate Reynolds number

Author:

Khayat Roger E.ORCID

Abstract

The steady laminar flow of a moderately inertial wall jet is examined theoretically near the exit of a channel. The free-surface jet emerges asymmetrically from the channel as it adheres to an infinite (upper) wall subject to a pressure gradient. The problem is solved using the method of matched asymptotic expansions. The small parameter involved in the expansions is the inverse cubic power of the Reynolds number. The flow field is obtained by matching the inviscid rotational core flow separately with the free-surface and the two wall layers. The upstream influence is examined as well as the break in the symmetry between the two wall layers. The wall jet exhibits a contraction near the channel exit that is independent of inertia, and eventually expands for any Reynolds number. Unlike the flow of a wall jet emerging into the same ambient fluid, the free-surface jet experiences a limited weakening in shear stress along the infinite wall, suggesting the possibility of separation for a jet with relatively low inertia. Significant shearing and elongation ensue at the exit, accompanied by flattening of the velocity profile near the upper wall.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3