Abstract
The steady laminar flow of a moderately inertial wall jet is examined theoretically near the exit of a channel. The free-surface jet emerges asymmetrically from the channel as it adheres to an infinite (upper) wall subject to a pressure gradient. The problem is solved using the method of matched asymptotic expansions. The small parameter involved in the expansions is the inverse cubic power of the Reynolds number. The flow field is obtained by matching the inviscid rotational core flow separately with the free-surface and the two wall layers. The upstream influence is examined as well as the break in the symmetry between the two wall layers. The wall jet exhibits a contraction near the channel exit that is independent of inertia, and eventually expands for any Reynolds number. Unlike the flow of a wall jet emerging into the same ambient fluid, the free-surface jet experiences a limited weakening in shear stress along the infinite wall, suggesting the possibility of separation for a jet with relatively low inertia. Significant shearing and elongation ensue at the exit, accompanied by flattening of the velocity profile near the upper wall.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献