Abstract
We consider finite-amplitude convection in a mushy layer during the primary solidification of a ternary alloy. Previous linear stability theories applied to ternary alloy primary-solidification models have identified an exceptional class of direct convective instability when all the individual stratifying agencies (one thermal and two solutal) were statically stabilizing. A reduced model, in which the effects of latent heat, solute rejection and background solidification are neglected, contains the essential interactions that admit qualitatively the same instability. We examine pattern selection for steady convection in this model. We find that roll, square or hexagonal convection patterns can be nonlinearly stable, depending on the relative importance of a number of physical effects, namely the solutal diffusion rates, the liquidus slopes and the background thermal and solutal density stratifications. The results for a special case are found to isolate a purely double-diffusive phase-change mechanism of pattern selection. Subcritical behaviour is identified inside the domain of individual static stability. A physical system is proposed that may be a promising one in which to experimentally identify these novel instabilities.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献