Pattern selection in ternary mushy layers

Author:

Guba Peter,Anderson Daniel M.ORCID

Abstract

We consider finite-amplitude convection in a mushy layer during the primary solidification of a ternary alloy. Previous linear stability theories applied to ternary alloy primary-solidification models have identified an exceptional class of direct convective instability when all the individual stratifying agencies (one thermal and two solutal) were statically stabilizing. A reduced model, in which the effects of latent heat, solute rejection and background solidification are neglected, contains the essential interactions that admit qualitatively the same instability. We examine pattern selection for steady convection in this model. We find that roll, square or hexagonal convection patterns can be nonlinearly stable, depending on the relative importance of a number of physical effects, namely the solutal diffusion rates, the liquidus slopes and the background thermal and solutal density stratifications. The results for a special case are found to isolate a purely double-diffusive phase-change mechanism of pattern selection. Subcritical behaviour is identified inside the domain of individual static stability. A physical system is proposed that may be a promising one in which to experimentally identify these novel instabilities.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3