Linear proportional–integral control for skin-friction reduction in a turbulent channel flow

Author:

Kim Euiyoung,Choi HaecheonORCID

Abstract

In the present study, we apply a proportional (P)–integral (I) feedback control to a turbulent channel flow for skin-friction reduction. The instantaneous wall-normal velocity at a sensing plane above the wall is measured as a sensing parameter, and blowing/suction is provided at the wall based on the PI control. The performance of PI controls is estimated by the change in the skin friction while varying the sensing plane location $y_{s}$ and the proportional and integral feedback gains ($\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D6FD}$ respectively). The opposition control proposed by Choi et al. (J. Fluid Mech., vol. 262, 1994, pp. 75–110) corresponds to a P control with $\unicode[STIX]{x1D6FC}=1$. When the sensing plane is located close to the wall ($y_{s}^{+}\lesssim 10$), PI controls result in greater skin-friction reductions than corresponding P controls. The root-mean-square (r.m.s.) sensing velocity fluctuations, considered as the control error, approach zero with successful PI controls, but do not with P controls. Successful PI controls reduce the strength of near-wall coherent structures and the r.m.s. velocity fluctuations above the wall apart from those near the wall due to the control input. The frequency spectra of the sensing velocity show that the I component of PI controls significantly reduces the energy at low frequencies, much more than P controls do. Proportional–integral controls are also applied to a linearized flow model having transient growth of disturbances. The performance of PI controls for a linearized flow model is very similar to that for a turbulent channel flow, i.e. the low-frequency components of disturbances are significantly reduced by the I component of PI controls, and the transient energy growth is suppressed more than by P controls.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3