Abstract
We report on direct numerical simulations to examine the spectral behaviour of turbulence close to and at a flat, stress-free surface. We find, consistent with field measurements near such a free surface, that an inertial-range type of behaviour is obtained for the horizontal components of the velocity at and near the stress-free surface, at horizontal wavelengths for which the vertical velocity is much smaller than the horizontal components. At approximately an integral length scale from the stress-free surface, the flow has adjusted back to more classical isotropic turbulence. The behaviour of the turbulence near the stress-free surface is similar to that observed recently for strongly stratified flows, and we argue that the causes of that behaviour are the same in both flows: the suppression of the large-scale vertical velocity and the allowance of strong vertical shearing of the horizontal velocity leading to a downscale transfer of energy and to the development of the$-5/3$spectra for the horizontal velocities.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献