Steady and unsteady fluidised granular flows down slopes

Author:

Jessop D. E.ORCID,Hogg A. J.,Gilbertson M. A.,Schoof C.

Abstract

Fluidisation is the process by which the weight of a bed of particles is supported by a gas flow passing through it from below. When fluidised materials flow down an incline, the dynamics of the motion differs from their non-fluidised counterparts because the granular agitation is no longer required to support the weight of the flowing layer. Instead, the weight is borne by the imposed gas flow and this leads to a greatly increased flow mobility. In this paper, a framework is developed to model this two-phase motion by incorporating a kinetic theory description for the particulate stresses generated by the flow. In addition to calculating numerical solutions for fully developed flows, it is shown that for sufficiently thick flows there is often a local balance between the production and dissipation of the granular temperature. This phenomenon permits an asymptotic reduction of the full governing equations and the identification of a simple state in which the volume fraction of the flow is uniform. The results of the model are compared with new experimental measurements of the internal velocity profiles of steady granular flows down slopes. The distance covered with time by unsteady granular flows down slopes and along horizontal surfaces and their shapes are also measured and compared with theoretical predictions developed for flows that are thin relative to their streamwise extent. For the horizontal flows, it was found that resistance from the sidewalls was required in addition to basal resistance to capture accurately the unsteady evolution of the front position and the depth of the current and for situations in which sidewall drag dominates, similarity solutions are found for the experimentally measured motion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3