On the compressible bidirectional vortex in a cyclonically driven Trkalian flow field

Author:

Maicke Brian A.,Cecil Orie M.,Majdalani JosephORCID

Abstract

In this study, the Bragg–Hawthorne equation (BHE) is extended in the context of a steady, inviscid and compressible fluid, thus leading to an assortment of partial differential equations that must be solved simultaneously. A solution is pursued by implementing a Rayleigh–Janzen expansion in the square of the reference Mach number. The corresponding formulation is subsequently used to derive a compressible approximation for the Trkalian model of the bidirectional vortex. The approximate solution is compared to a representative computational fluid dynamics simulation in order to validate the modelling assumptions under realistic conditions. The latter is found to exhibit an appreciable steepening of the axial velocity profile, which is accompanied by an axial dependence in the mantle location that is somewhat reminiscent of the radial shifting of mantles reported in some experimental trials and simulations. In this context, flows with a strong swirl intensity do not seem to be significantly affected by the introduction of compressibility. Rather, as the swirl intensity is reduced the effects of compressibility become more noticeable, especially in the axial and radial velocity components. It may also be realized that imparting a progressively larger swirl component stands to promote the axisymmetric distribution of flow field properties, and these include an implicit resistance to dilatational effects in the tangential direction. From a broader perspective, this study provides a viable approximation to the Trkalian motion associated with cyclonic flows, while serving as a limited proof of concept for the compressible Bragg–Hawthorne procedure applied to a steady, axisymmetric and inviscid fluid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference40 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3