Geometric generalised Lagrangian-mean theories

Author:

Gilbert Andrew D.,Vanneste JacquesORCID

Abstract

Many fluctuation-driven phenomena in fluids can be analysed effectively using the generalised Lagrangian-mean (GLM) theory of Andrews & McIntyre (J. Fluid Mech., vol. 89, 1978, pp. 609–646) This finite-amplitude theory relies on particle-following averaging to incorporate the constraints imposed by the material conservation of certain quantities in inviscid regimes. Its original formulation, in terms of Cartesian coordinates, relies implicitly on an assumed Euclidean structure; as a result, it does not have a geometrically intrinsic, coordinate-free interpretation on curved manifolds, and suffers from undesirable features. Motivated by this, we develop a geometric generalisation of GLM that we formulate intrinsically using coordinate-free notation. One benefit is that the theory applies to arbitrary Riemannian manifolds; another is that it establishes a clear distinction between results that stem directly from geometric consistency and those that depend on particular choices. Starting from a decomposition of an ensemble of flow maps into mean and perturbation, we define the Lagrangian-mean momentum as the average of the pull-back of the momentum one-form by the perturbation flow maps. We show that it obeys a simple equation which guarantees the conservation of Kelvin’s circulation, irrespective of the specific definition of the mean flow map. The Lagrangian-mean momentum is the integrand in Kelvin’s circulation and distinct from the mean velocity (the time derivative of the mean flow map) which advects the contour of integration. A pseudomomentum consistent with that in GLM can then be defined by subtracting the Lagrangian-mean momentum from the one-form obtained from the mean velocity using the manifold’s metric. The definition of the mean flow map is based on choices made for reasons of convenience or aesthetics. We discuss four possible definitions: a direct extension of standard GLM, a definition based on optimal transportation, a definition based on a geodesic distance in the group of volume-preserving diffeomorphisms, and the ‘glm’ definition proposed by Soward & Roberts (J. Fluid Mech., vol. 661, 2010, pp. 45–72). Assuming small-amplitude perturbations, we carry out order-by-order calculations to obtain explicit expressions for the mean velocity and Lagrangian-mean momentum at leading order. We also show how the wave-action conservation of GLM extends to the geometric setting. To make the paper self-contained, we introduce in some detail the tools of differential geometry and main ideas of geometric fluid dynamics on which we rely. These include variational formulations which we use for alternative derivations of some key results. We mostly focus on the Euler equations for incompressible inviscid fluids but sketch out extensions to the rotating–stratified Boussinesq, compressible Euler, and magnetohydrodynamic equations. We illustrate our results with an application to the interaction of inertia-gravity waves with balanced mean flows in rotating–stratified fluids.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric mechanics of the vertical slice model;Geometric Mechanics;2024-06

2. Computing Lagrangian means;Journal of Fluid Mechanics;2023-04-10

3. A Geometric Look at Momentum Flux and Stress in Fluid Mechanics;Journal of Nonlinear Science;2023-01-27

4. On the role of continuous symmetries in the solution of the three-dimensional Euler fluid equations and related models;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-05-09

5. Stokes drift and its discontents;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3