Abstract
While Stokes’ hypothesis of neglecting bulk viscous effects is exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, it is unclear to what extent this assumption holds for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g. $\text{CO}_{2}$). Our objective is to understand the mechanisms by which bulk viscosity and the associated phenomena affect moderately compressible turbulence, in particular energy transfer and dissipation. Using direct numerical simulations of the compressible Navier–Stokes equations, we study the decay of compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0 to 1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; whereas enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by over two orders of magnitude within the first two eddy-turnover times. Via a Helmholtz decomposition of the flow, we determine that the primary action of bulk viscosity is to damp the dilatational velocity fluctuations and reduce dilatational–solenoidal exchanges, as well as pressure–dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal degrees of freedom. Our results indicate that for gases whose bulk viscosity is of the order of their shear viscosity (e.g. hydrogen) the turbulence is not significantly affected by bulk viscous dissipation, in which case neglecting bulk viscosity is acceptable in practice. However, in problems involving compressible, turbulent flows of gases like $\text{CO}_{2}$ whose bulk viscosities are thousands of times greater than their shear viscosities, bulk viscosity cannot be ignored.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献