Water waves with moving boundaries

Author:

Fokas Athanasios S.,Kalimeris KonstantinosORCID

Abstract

The unified transform, also known as the Fokas method, provides a powerful methodology for studying boundary value problems. Employing this methodology, we analyse inviscid, irrotational, two-dimensional water waves in a bounded domain, and in particular we study the generation of waves by a moving piecewise horizontal bottom, as it occurs in tsunamis. We show that this problem is characterised by two equations which involve only first-order derivatives. It is argued that under the assumptions of ‘small amplitude waves’ but not of ‘long waves’, the above two equations can be treated numerically via a recently introduced numerical technique for elliptic partial differential equations in a polygonal domain. In the particular case that the moving bottom is horizontal and under the assumption of ‘small amplitude waves’, but not of ‘long waves’, these equations yield a non-local generalisation of the Boussinesq system. Furthermore, under the additional assumption of ‘long waves’ the above system yields a Boussinesq-type system, which however includes the effect of the moving boundary.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Oliveras, K. 2009 Stability of periodic surface gravity water waves. PhD thesis, University of Washington.

2. Efficient numerical solution of the generalized Dirichlet–Neumann map for linear elliptic PDEs in regular polygon domains

3. A spectrally accurate numerical implementation of the Fokas transform method for Helmholtz-type PDEs

4. The instability of periodic surface gravity waves

5. A numerical technique for linear elliptic partial differential equations in polygonal domains;Hashemzadeh;Proc. Math. Phys. Engng Sci.,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3