Onset of transient natural convection in porous media due to porosity perturbations

Author:

Tilton NilsORCID

Abstract

Onset of natural convection due to transient diffusion in porous media has attracted considerable attention for its applications to CO$_{2}$ sequestration. Stability analyses typically investigate the onset of such convection using an initial value problem approach in which a perturbation is introduced to the concentration field at an initial time $t=t_{p}$. This leads to debate concerning physically appropriate perturbations, the critical time $t_{c}$ for linear instability and the counter-intuitive notion of an optimal initial time $t_{p}$ that maximizes perturbation growth. We propose an alternate approach in which transient diffusion is continuously perturbed by small porosity variations. With this approach, instability occurs immediately ($t_{c}=0$) without violating any physical constraints, such that the concepts of initial time $t_{p}$ and critical time $t_{c}$ become irrelevant. We also argue that the onset time for nonlinear convection is a more physically relevant parameter, and show that it can be predicted using a simple asymptotic expansion. Using the expansion, we explore the onset of nonlinear convection due to porosity perturbations that vary sinusoidally in the horizontal and vertical directions, and show there are optimal wavelengths that minimize the onset time. Finally, we find simple relationships for these wavelengths as functions of perturbation magnitude. These show that even small porosity perturbations, typically considered negligible in previous literature, are sufficient to trigger nonlinear convection and thereby influence the rate of CO$_{2}$ dissolution within time scales comparable to previous analyses.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3