Instability wave–streak interactions in a supersonic boundary layer

Author:

Paredes PedroORCID,Choudhari Meelan M.,Li Fei

Abstract

The interaction of stationary streaks undergoing non-modal growth with modally unstable instability waves in a supersonic flat-plate boundary-layer flow is studied using numerical computations. For incompressible flows, previous studies have shown that boundary-layer modulation due to streaks below a threshold amplitude level can stabilize the Tollmien–Schlichting instability waves, resulting in a delay in the onset of laminar–turbulent transition. In the supersonic regime, the most-amplified linear waves become three-dimensional, corresponding to oblique, first-mode waves. This change in the character of dominant instabilities leads to an important change in the transition process, which is now dominated by oblique breakdown via nonlinear interactions between pairs of first-mode waves that propagate at equal but opposite angles with respect to the free stream. Because the oblique breakdown process is characterized by a strong amplification of stationary streamwise streaks, artificial excitation of such streaks may be expected to promote transition in a supersonic boundary layer. Indeed, suppression of those streaks has been shown to delay the onset of transition in prior literature. This paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite-amplitude streaks in a two-dimensional, Mach 3 adiabatic flat-plate boundary-layer flow, followed by the modal instability characteristics of the perturbed, streaky boundary-layer flow. Both parts of the investigation are performed with the plane-marching parabolized stability equations. Consistent with previous findings, the present study shows that optimally growing stationary streaks can destabilize the first-mode waves, but only when the spanwise wavelength of the instability waves is equal to or smaller than twice the streak spacing. Transition in a benign disturbance environment typically involves first-mode waves with significantly longer spanwise wavelengths, and hence, these waves are stabilized by the optimal growth streaks. Thus, as long as the amplification factors for the destabilized, short wavelength instability waves remain below the threshold level for transition, a significant net stabilization is achieved, yielding a potential transition delay that may be comparable to the length of the laminar region in the uncontrolled case.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference40 articles.

1. Transition Onset Predictions for Oblique Breakdown in a Mach 3 Boundary Layer

2. Oblique-mode breakdown and secondary instability in supersonic boundary layers

3. The nonlinear PSE-3D concept for transition prediction in flows with a single slowly-varying spatial direction;Paredes;Procedia IUTAM,2015

4. Optimal Growth in Hypersonic Boundary Layers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3