Abstract
The $\unicode[STIX]{x1D707}(I)$-rheology was recently proposed as a potential candidate to model the incompressible flow of frictional grains in the dense inertial regime. However, this rheology was shown to be ill-posed in the mathematical sense for a large range of parameters, notably in the low and large inertial number limits (Barker et al., J. Fluid Mech., vol. 779, 2015, pp. 794–818). In this rapid communication, we extend the stability analysis of Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818) to compressible flows. We show that compressibility regularizes the equations, making the problem well-posed for all parameters, with the condition that sufficient dissipation be associated with volume changes. In addition to the usual Coulomb shear friction coefficient $\unicode[STIX]{x1D707}$, we introduce a bulk friction coefficient $\unicode[STIX]{x1D707}_{b}$, associated with volume changes and show that the problem is well-posed if $\unicode[STIX]{x1D707}_{b}>1-7\unicode[STIX]{x1D707}/6$. Moreover, we show that the ill-posed domain defined by Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818) transforms into a domain where the flow is unstable but remains well-posed when compressibility is taken into account. These results suggest the importance of taking into account dynamic compressibility for the modelling of dense granular flows and open new perspectives to investigate the emission and propagation of acoustic waves inside these flows.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献