Study of air-core vortical flow structure induced by a plughole vortex

Author:

Ahmed Rayhan,Lim HeechangORCID

Abstract

This paper describes a study of the generation of a plughole vortex and its consequences in a drainpipe during drainage of water from a stationary rectangular tank. The critical and minimum depths of water above the inlet of the drainpipe, where a surface dip starts to develop for drainpipes of various diameters, were examined parametrically. This study explored the following naturally occurring phenomena arising from a plughole vortex. (i) A plughole vortex initially causes a surface dip to develop towards the inlet of the drainpipe and as the surface dip approaches the inlet of the drainpipe it creates a droplet-shaped air bubble. (ii) A unique bubble transformation, i.e. from a droplet-shaped to a donut-shaped bubble ring, occurs just after the separation of the droplet-shaped air bubble from the surface dip. (iii) The donut-shaped bubble ring flows with the drain water and initially causes bubbly flow in the drainpipe. (iv) As the water head above the inlet of the drainpipe decreases, the droplet-shaped bubble size increases, and consequently, the bubble ring size increases and causes slug flow in the drainpipe. (v) As the slugs combine, the flow of the draining water eventually becomes annular flow in the drainpipe. Sounds, such as that of instantaneous fizz and bubble sink draining, were observed to be produced as a result of the bubble formation process. Temporal changes in the shape and size of the air bubbles were studied. Within the range of 0.45–0.6, the ratio of the bubble diameter to the bubble length was found to be linearly proportional to the ratio of the water depth to the diameter of the drainpipe. Several drainage cases were simulated numerically to observe the physics of these naturally occurring phenomena. The shapes and sizes of the vortices induced by plugholes have been visualised and analysed using the vortex core method.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Modelling Merging and Fragmentation in Multiphase Flows with SURFER

2. Ein neuerphysikalischer beweis der achsendrehung der erde;Turmlitz;Sitz.ber. Akad. Wiss. Wien Abt. IIa.,1908

3. Volume of fluid methods for immiscible-fluid and free-surface flows

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3