Extreme vortex states and the growth of enstrophy in three-dimensional incompressible flows

Author:

Ayala Diego,Protas BartoszORCID

Abstract

In this investigation we study extreme vortex states defined as incompressible velocity fields with prescribed enstrophy${\mathcal{E}}_{0}$which maximize the instantaneous rate of growth of enstrophy$\text{d}{\mathcal{E}}/\text{d}t$. We provide an analytic characterization of these extreme vortex states in the limit of vanishing enstrophy${\mathcal{E}}_{0}$and, in particular, show that the Taylor–Green vortex is in fact a local maximizer of$\text{d}{\mathcal{E}}/\text{d}t$in this limit. For finite values of enstrophy, the extreme vortex states are computed numerically by solving a constrained variational optimization problem using a suitable gradient method. In combination with a continuation approach, this allows us to construct an entire family of maximizing vortex states parameterized by their enstrophy. We also confirm the findings of the seminal study by Lu & Doering (Indiana Univ. Math. J., vol. 57, 2008, pp. 2693–2727) that these extreme vortex states saturate (up to a numerical prefactor) the fundamental bound$\text{d}{\mathcal{E}}/\text{d}t<C{\mathcal{E}}^{3}$, for some constant$C>0$. The time evolution corresponding to these extreme vortex states leads to a larger growth of enstrophy than the growth achieved by any of the commonly used initial conditions with the same enstrophy${\mathcal{E}}_{0}$. However, based on several different diagnostics, there is no evidence of any tendency towards singularity formation in finite time. Finally, we discuss possible physical reasons why the initially large growth of enstrophy is not sustained for longer times.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference54 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lagrangian dynamics and regularity of the spin Euler equation;Journal of Fluid Mechanics;2024-04-24

2. Velocity gradient analysis of a head-on vortex ring collision;Journal of Fluid Mechanics;2024-03-05

3. Systematic Search for Singularities in 3D Euler Flows;Journal of Nonlinear Science;2023-10-06

4. An accelerated Sobolev gradient method for unconstrained optimization problems based on variable inner products;Journal of Computational and Applied Mathematics;2023-03

5. On Singular Vortex Patches, I: Well-posedness Issues;Memoirs of the American Mathematical Society;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3