The ‘hanging flag’ problem: on the heaving motion of a thin filament in the limit of small flexural stiffness

Author:

Manela A.ORCID,Weidenfeld M.

Abstract

We investigate the fluid–structure interaction of a vertically hanging filament immersed in uniform incompressible high Reynolds number flow. The filament is subject to small-amplitude harmonic heaving at its upstream edge, and to a gravity-induced (‘hanging chain’) tension force. We focus on the limit of small bending rigidity to examine the differences between a highly elastic beam (where bending rigidity is small but finite) and a membrane (where bending rigidity vanishes). The problem is analysed by means of thin airfoil theory, in conjunction with a discrete vortex model for the downstream wake. Denoting the filament non-dimensional rigidity (normalized by the tension force) by $\bar{\unicode[STIX]{x1D700}}$, it is first verified that the beam deflection and associated flow field converge to the membrane solution at $\bar{\unicode[STIX]{x1D700}}\rightarrow 0$. At low actuation frequencies, the differences between the membrane and beam motions are small, and both follow a nearly rigid-body motion parallel to the upstream-edge actuation. With increasing frequency, the differences between the beam and membrane become visible at increasingly lower values of $\bar{\unicode[STIX]{x1D700}}$, and the stabilizing effect of beam flexural rigidity, resulting in reduced flapping amplitudes, is apparent. Examining the beam motion near its edge points at non-small frequencies, semi-analytic approximations for the associated time-periodic displacements are obtained. Close to the actuated end, a layer of width $\bar{\unicode[STIX]{x1D700}}^{1/2}$ is found, where the flexural rigidity term in the equation of motion is balanced by the tension term. Here, the differences between the beam and membrane deflections are attributed to the additional zero-slope condition satisfied by the former. In the vicinity of the free end, a local Taylor expansion is carried out. A balance between the bending and inertia terms results in a layer of width $\propto \bar{\unicode[STIX]{x1D700}}^{1/4}/\bar{\unicode[STIX]{x1D714}}_{h}^{1/2}$, where $\bar{\unicode[STIX]{x1D714}}_{h}$ denotes the scaled heaving frequency. The layer is therefore thicker than the upstream layer for $\bar{\unicode[STIX]{x1D714}}_{h}\approx 1$, and becomes thinner with increasing $\bar{\unicode[STIX]{x1D714}}_{h}$. Within the layer, the beam deflects linearly with the distance from the edge, in marked difference from a membrane and in accordance with the free-end conditions satisfied by the former.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3