Non-isolated drop impact on surfaces

Author:

Wang Y.,Bourouiba L.ORCID

Abstract

Upon impact on a solid surface, a drop expands into a sheet, a corona, which can rebound, stick or splash and fragment into secondary droplets. Previously, focus has been placed on impacts of single drops on surfaces to understand their splash, rebound or spreading. This is important for spraying, printing, and environmental and health processes such as contamination by pathogen-bearing droplets. However, sessile drops are ubiquitous on most surfaces and their interaction with the impacting drop is largely unknown. We report on the regimes of interactions between an impacting drop and a sessile drop. Combining experiments and theory, we derive the existence conditions for the four regimes of drop–drop interaction identified, and report that a subtle combination of geometry and momentum transfer determines a critical impact force governing their physics. Crescent-moon fragmentation is most efficient at producing and projecting secondary droplets, even when the impacting drop Weber number would not allow for splash to occur on the surface considered if the drop were isolated. We introduce a critical horizontal impact Weber number $We_{c}$ that governs the formation of a sheet from the sessile drop upon collision with the expanding corona of the impacting drop. We also predict and validate important properties of the crescent-moon fragmentation: the extension of its sheet base and the ligaments surrounding its base. Finally, our results suggest a new paradigm: impacts on most surfaces can make a splash of a new kind – a crescent-moon – for any impact velocity when neighbouring sessile drops are present.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3