Regularized string model for nanofibre formation in centrifugal spinning methods

Author:

Noroozi S.,Alamdari H.,Arne W.,Larson R. G.,Taghavi S. M.ORCID

Abstract

We develop a general regularized thin-fibre (string) model to predict the properties of non-Newtonian fluid fibres generated by centrifugal spinning. In this process the fibre emerges from a nozzle of a spinneret that rotates rapidly around its axis of symmetry, in the presence of centrifugal, Coriolis, inertial, viscous/shear-thinning, surface tension and gravitational forces. We analyse the effects of five important dimensionless groups, namely, the Rossby number ($Rb$), the Reynolds number ($Re$), the Weber number ($We$), the Froude number ($Fr$) and a power-law index ($m$), on the steady state trajectory and thinning of fibre radius. In particular, we find that the gravitational force mainly affects the fibre vertical angle at small arc lengths as well as the fibre trajectory. We show that for small $Rb$, which is the regime of nanofibre formation in centrifugal spinning methods, rapid thinning of the fibre radius occurs over small arc lengths, which becomes more pronounced as $Re$ increases or $m$ decreases. At larger arc lengths, a relatively large $We$ results in a spiral trajectory regime, where the fibre eventually recovers a corresponding inviscid limit with a slow thinning of the fibre radius as a function of the arc length. Viscous forces do not prevent the fibre from approaching the inviscid limit, but very strong surface tension forces may do so as they could even result in a circular trajectory with an almost constant fibre radius. We divide the spiral and circular trajectories into zones of no thinning, intense thinning and slow or ceased thinning, and for each zone we provide simple expressions for the fibre radius as a function of the arc length.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference38 articles.

1. An Introduction to Fluid Dynamics

2. Panda, S. 2006 The dynamics of viscous fibres. PhD thesis, Technische Universität Kaiserslautern.

3. Coiling of viscous jets

4. Rheological characterization of poly(ethylene oxide) solutions of different molecular weights

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3