Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow

Author:

Rallabandi BhargavORCID,Hilgenfeldt Sascha,Stone Howard A.

Abstract

For a small sphere suspended in a background fluid flow near an obstacle, we calculate the hydrodynamic force on the sphere in the direction normal to the boundary of the obstacle. Using the Lorentz reciprocal theorem, we obtain analytical expressions for the normal force in the Stokes flow limit, valid for arbitrary separations of the particle from the obstacle, both for solid obstacles and those with free surfaces. The main effect of the boundary is to produce a normal force proportional to extensional flow gradients in the vicinity of the particle. The strength of this force is greatest when the separation between the surfaces of the particle and the obstacle is small relative to the particle size. While the magnitude of the force weakens for large separations between the sphere and the obstacle (decaying quadratically with separation distance), it can significantly modify Faxén’s law even at modestly large separation distances. In addition, we find a second force contribution due to the curvature of the background flow normal to the obstacle, which is also important when the sphere is close to the obstacle. The results of the theory are of importance to the dynamics of particles in confined geometries, whether bounded by a solid obstacle, the wall of a channel or a gas bubble.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3