Linear global stability of two incompressible coaxial jets

Author:

Canton J.ORCID,Auteri F.ORCID,Carini M.

Abstract

The linear stability of two incompressible coaxial jets, separated by a thick duct wall, is investigated by means of both a modal and a non-modal approach within a global framework. The attention is focused on the range of unitary velocity ratios for which an alternate vortex shedding from the duct wall is known to dominate the flow. In spite of the inherent convective nature of jet flow instabilities, such behaviour is shown to originate from an unstable global mode of the dynamics linearised around the axisymmetric base flow. The corresponding wavemaker is located in the recirculating-flow region formed behind the duct wall. At the same time, the transient-growth analysis reveals that huge amplifications (up to $20$ orders of magnitude) of small flow perturbations at the nozzle exit can occur in the subcritical regime, especially for high ratios between the outer and the inner velocities.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference35 articles.

1. Hydrodynamic instabilities in open flows

2. Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow

3. Segalini, A. 2010 Experimental analysis of coaxial jets: instability, flow and mixing characterization. PhD thesis, Università di Bologna.

4. Djeridane, T. 1994 Contribution à l’étude expérimentale de jets turbulents axisymétriques à densité variable. PhD thesis, Aix-Marseille II.

5. Nonmodal Stability Theory

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3