Ice formation within a thin film flowing over a flat plate

Author:

Moore M. R.ORCID,Mughal M. S.,Papageorgiou D. T.

Abstract

We present a model for ice formation in a thin, viscous liquid film driven by a Blasius boundary layer after heating is switched off along part of the flat plate. The flow is assumed to initially be in the Nelson et al. (J. Fluid Mech., vol. 284, 1995, pp. 159–169) steady-state configuration with a constant flux of liquid supplied at the tip of the plate, so that the film thickness grows like $x^{1/4}$ in distance along the plate. Plate cooling is applied downstream of a point, $Lx_{0}$, an $O(L)$-distance from the tip of the plate, where $L$ is much larger than the film thickness. The cooling is assumed to be slow enough that the flow is quasi-steady. We present a thorough asymptotic derivation of the governing equations from the incompressible Navier–Stokes equations in each fluid and the corresponding Stefan problem for ice growth. The problem breaks down into two temporal regimes corresponding to the relative size of the temperature difference across the ice, which are analysed in detail asymptotically and numerically. In each regime, two distinct spatial regions arise, an outer region of the length scale of the plate, and an inner region close to $x_{0}$ in which the film and air are driven over the growing ice layer. Moreover, in the early time regime, there is an additional intermediate region in which the air–water interface propagates a slope discontinuity downstream due to the sudden onset of the ice at the switch-off point. For each regime, we present ice profiles and growth rates, and show that for large times, the film is predicted to rupture in the outer region when the slope discontinuity becomes sufficiently enhanced.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear Quadratic Regulation Control for Falling Liquid Films;SIAM Journal on Applied Mathematics;2024-05-10

2. Melting of wall-mounted ice in shear flow;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-03

3. Fluid flow during phase transition: From viscous fluid to viscoelastic solid via variable-order calculus;Physics of Fluids;2023-12-01

4. Thermocapillary oscillations in liquid thin films: Interplay of substrate topography and thermal wave;International Communications in Heat and Mass Transfer;2023-11

5. Wetting and icing of surfaces;Current Opinion in Colloid & Interface Science;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3