Turbulent bubble fountains

Author:

Lippert Martin C.,Woods Andrew W.ORCID

Abstract

We explore the dynamics of turbulent bubble fountains produced when a descending stream of fresh water and air bubbles issues from a nozzle submerged in a tank of water. The bubbles have diameters of 2 to 5 mm and the fountains have source Froude numbers ranging from 10 to 240. The Reynolds numbers of the bubbly fountains range from 4000 to 24 000. The bubbles, carried into the tank by the downward jet of water, lead to a buoyancy force which reduces the downward momentum of the jet, thus producing a fountain. We find that $H_{F}$, the downward penetration distance of the bubbles into the water reservoir, may be characterised by two parameters: $\unicode[STIX]{x1D6EC}$, the ratio of the bubble rise speed to the characteristic fountain velocity, $u_{F}=f_{0}^{1/2}/m_{0}^{1/4}$, and $Fr_{0}$, the source Froude number, given by $m_{0}^{5/4}/(q_{W_{0}}f_{0}^{1/2})$, where $q_{W_{0}}$, $m_{0}$ and $f_{0}$ are the source volume, momentum and buoyancy fluxes. As $\unicode[STIX]{x1D6EC}$ increases, $H_{F}$ decreases, a result which is directly analogous to the height of rise of particles in a particle-laden fountain (Mingotti & Woods, J. Fluid Mech., vol. 793, 2016, R1). Also, we find that $H_{F}$ increases as $Fr_{0}$ increases, a result directly analogous to single-phase fountains (Turner, J. Fluid Mech., vol. 26, 1966, pp. 779–792). We present a model for the conservation of volume, momentum and buoyancy fluxes and use this to predict the penetration distance of the bubbles corresponding to that point at which the fountain liquid velocity equals the bubble rise speed. Using the best-fit value for the entrainment coefficient, $\unicode[STIX]{x1D6FC}=0.04\pm 0.004$, we find that our experimental measurements of the bubble penetration distance are in good accord with the model predictions for $10<Fr_{0}<240$ and $2<\unicode[STIX]{x1D6EC}<15$. In our experiments the bubble rise speed, $u_{slip}$, is large compared to the entrainment velocity of the descending fountain. Thus, only a small fraction of the rising bubbles are re-entrained, and so the buoyancy flux of the fountain is approximately independent of depth. Flow-visualisation experiments also show that the liquid momentum flux is not exhausted at the point of bubble separation and so the liquid in the fountain continues to travel downward, separated from the bubbles. We use the new theoretical model to estimate the flux of air entrained into plunging water jets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3