Evaporation with the formation of chains of liquid bridges

Author:

Chen C.,Joseph P.,Geoffroy S.,Prat M.,Duru P.ORCID

Abstract

The objective of the present work is to study the drying of a quasi-two-dimensional model porous medium, hereafter called the micromodel, initially filled with a pure liquid. The micromodel consists of cylinders measuring $50~\unicode[STIX]{x03BC}\text{m}$ in both height and diameter, radially arranged as a set of neighbouring spirals and sandwiched between two horizontal flat plates. As drying proceeds, air invades the pore space and elongated liquid films trapped by capillary forces form along the spirals. These films consist of ‘chains’ of liquid bridges connecting neighbouring cylinders. They provide hydraulic connectivity between the central bulk liquid cluster and the external rim of the cylinder pattern, where evaporation takes place during a first constant-evaporation-rate drying stage. The first goal of the present paper is to describe experimentally the phase distribution during drying, notably the evolution of liquid films, which controls the evaporation kinetics (e.g. the depinning of the films from the external rim signals the end of the constant-evaporation-rate period). Then, a viscocapillary model for the drying process is presented. It is based on numerical simulations of a liquid film capillary shape and viscous flow within a film. The model shows a reasonably good agreement with the experimental data. Thus, the present study is a step towards direct modelling of the effect of films on the drying of more complex porous media (e.g. packing of beads) and should be of interest for multiphase flow applications in porous media, involving transport within liquid films.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3