Abstract
Gravity currents often occur on complex topographies and are therefore subject to spatial development. We present experimental results on continuously supplied gravity currents moving from a horizontal to a sloping boundary, which is either concave or straight. The change in boundary slope and the consequent acceleration give rise to a transition from a stable subcritical current with a large Richardson number to a Kelvin–Helmholtz (KH) unstable current. It is shown here that depending on the overall acceleration parameter$\overline{T_{a}}$, expressing the rate of velocity increase, the currents can adjust gradually to the slope conditions (small$\overline{T_{a}}$) or go through acceleration–deceleration cycles (large$\overline{T_{a}}$). In the latter case, the KH billows at the interface have a strong effect on the flow dynamics, and are observed to cause boundary layer separation. Comparison of currents on concave and straight slopes reveals that the downhill deceleration on concave slopes has no qualitative influence, i.e. the dynamics is entirely dominated by the initial acceleration and ensuing KH billows. Following the similarity theory of Turner 1973 (Buoyancy Effects in Fluids. Cambridge University Press), we derive a general equation for the depth-integrated velocity that exhibits all driving and retarding forces. Comparison of this equation with the experimental velocity data shows that when$\overline{T_{a}}$is large, bottom friction and entrainment are large in the region of appearance of KH billows. The large bottom friction is confirmed by the measured high Reynolds stresses in these regions. The head velocity does not exhibit the same behaviour as the layer velocity. It gradually approaches an equilibrium state even when the acceleration parameter of the layer is large.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献