Abstract
The cascading process of turbulent kinetic energy from large-scale fluid motions to small-scale and lesser-scale fluid motions in isotropic turbulence may be modelled as a hierarchical random multiplicative process according to the multifractal formalism. In this work, we show that the same formalism might also be used to model the cascading process of momentum in wall-bounded turbulent flows. However, instead of being a multiplicative process, the momentum cascade process is additive. The proposed multifractal model is used for describing the flow kinematics of the low-pass filtered streamwise wall-shear stress fluctuation $\unicode[STIX]{x1D70F}_{l}^{\prime }$, where $l$ is the filtering length scale. According to the multifractal formalism, $\langle {\unicode[STIX]{x1D70F}^{\prime }}^{2}\rangle \sim \log (Re_{\unicode[STIX]{x1D70F}})$ and $\langle \exp (p\unicode[STIX]{x1D70F}_{l}^{\prime })\rangle \sim (L/l)^{\unicode[STIX]{x1D701}_{p}}$ in the log-region, where $Re_{\unicode[STIX]{x1D70F}}$ is the friction Reynolds number, $p$ is a real number, $L$ is an outer length scale and $\unicode[STIX]{x1D701}_{p}$ is the anomalous exponent of the momentum cascade. These scalings are supported by the data from a direct numerical simulation of channel flow at $Re_{\unicode[STIX]{x1D70F}}=4200$.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献