Abstract
The flow of a viscous liquid film coating the interior of a vertical tube is studied for the case when the film is driven upwards against gravity by a constant volume flux of air through the centre of the tube. A nonlinear model exploiting the slowly varying liquid–air interface is first developed to estimate the interfacial stresses created by the airflow. A comparison of the model with both experiments and previously developed theoretical results is conducted for two geometrical settings: channel and pipe flow. In both geometries, the model compares reasonably well with previous experiments. A long-wave asymptotic theory is then developed for the air–liquid interface taking into account the estimated free-surface stresses created by the airflow. The stability of small interfacial disturbances is studied analytically, and it is shown that the modelled free-surface stresses contribute to both an increased upwards disturbance velocity and a more rapid instability growth than those of a previously developed ‘locally Poiseuille’ model. Numerical solutions to the long-wave model exhibit saturated waves, whose profiles and velocities show substantial improvement with respect to the previous model predictions. The theoretical results are compared with new experiments for a modified version of the set-up described in Part 1.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献