Reynolds number scaling in cryogenic turbulent Rayleigh–Bénard convection in a cylindrical aspect ratio one cell

Author:

Musilová VěraORCID,Králík Tomáš,La Mantia MarcoORCID,Macek Michal,Urban Pavel,Skrbek Ladislav

Abstract

We perform an experimental study of turbulent Rayleigh–Bénard convection up to very high Rayleigh number, $10^{8}<Ra<10^{14}$, in a cylindrical aspect ratio one cell, 30 cm in height, filled with cryogenic helium gas. We monitor temperature fluctuations in the convective flow with four small (0.2 mm) sensors positioned in pairs 1.5 cm from the sidewalls and 2.5 cm vertically apart and symmetrically around the mid-height of the cell. Based on one-point and two-point correlations of the temperature fluctuations, we determine different types of Reynolds numbers, $\mathit{Re}$, associated with the large-scale circulation (LSC). We observe a transition between two types of $\mathit{Re}(\mathit{Ra})$ scaling around $\mathit{Ra}=10^{10}{-}10^{11}$, which is accompanied by a scaling change of the skewness of the probability distribution functions (PDFs) of the temperature fluctuations. The $\mathit{Re}(\mathit{Ra})$ dependencies measured near the sidewall at Prandtl number $\mathit{Pr}\sim 1$ are consistent with the $\mathit{Ra}^{4/9}\mathit{Pr}^{-2/3}$ scaling above the transition, while for $\mathit{Ra}<10^{10}$, the $\mathit{Re}(\mathit{Ra})$ dependencies are steeper. It seems likely that this change in $\mathit{Re}(\mathit{Ra})$ scaling is linked to the previously reported change in the Nusselt number $\mathit{Nu}(\mathit{Ra})$ scaling. This behaviour is in agreement with independent cryogenic laboratory experiments with $\mathit{Pr}\sim 1$, but markedly different from the $\mathit{Re}$ scaling obtained in water experiments ($\mathit{Pr}\sim 3.3{-}5.6$). We discuss the results in comparison with different versions of the Grossmann–Lohse theory.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultimate Rayleigh-Bénard turbulence;Reviews of Modern Physics;2024-08-06

2. Assessing non-Oberbeck-Boussinesq effects of convection in cryogenic helium;Physical Review Fluids;2023-09-26

3. Applicability of Taylor's frozen hypothesis and elliptic model in the atmospheric surface layer;Physics of Fluids;2022-07

4. Steady thermal convection representing the ultimate scaling;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-04-25

5. Thermal Waves and Heat Transfer Efficiency Enhancement in Harmonically Modulated Turbulent Thermal Convection;Physical Review Letters;2022-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3