Lagrangian transport by breaking surface waves

Author:

Deike LucORCID,Pizzo NickORCID,Melville W. Kendall

Abstract

The Lagrangian transport due to non-breaking and breaking focusing wave packets is examined. We present direct numerical simulations of the two-phase air–water Navier–Stokes equations describing focusing wave packets, investigating the Lagrangian drift by tracking tracer particles in the water before, during and after the breaking event. The net horizontal transport for non-breaking focusing packets is well described by the classical Stokes drift, both at the surface and in the bulk of the fluid, where the e-folding scale of the evanescent vertical profile is given by the characteristic wavenumber. For focusing wave packets that lead to breaking, we observe an added drift that can be ten times larger than the classical Stokes drift for a non-breaking packet at the surface, while the initial depth of the broken fluid scales with the wave height at breaking. We find that the breaking induced Lagrangian transport scales with the breaking strength. A simple scaling argument is proposed to describe this added drift and is found to be consistent with the direct numerical simulations. Applications to upper ocean processes are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3