Inclined gravity currents filling basins: the impact of peeling detrainment on transport and vertical structure

Author:

Hogg Charlie A. R.ORCID,Dalziel Stuart B.,Huppert Herbert E.,Imberger Jörg

Abstract

Transport of dense fluid by an inclined gravity current can control the vertical density structure of the receiving basin in many natural and industrial settings. A case familiar to many is a lake fed by river water that is dense relative to the lake water. In laboratory experiments, we pulsed dye into the basin inflow to visualise the transport pathway of the inflow fluid through the basin. We also measured the evolving density profile as the basin filled. The experiments confirmed previous observations that when the turbulent gravity current travelled through ambient fluid of uniform density, only entrainment into the dense current occurred. When the gravity current travelled through the stratified part of the ambient fluid, however, the outer layers of the gravity current outflowed from the current by a peeling detrainment mechanism and moved directly into the ambient fluid over a large range of depths. The prevailing model of a filling box flow assumes that a persistently entraining gravity current entrains fluid from the basin as the current descends to the deepest point in the basin. This model, however, is inconsistent with the transport pathway observed in visualisations and poorly matches the stratifications measured in basin experiments. The main contribution of the present work is to extend the prevailing filling box model by incorporating the observed peeling detrainment. The analytical expressions given by the peeling detrainment model match the experimental observations of the density profiles more closely than the persistently entraining model. Incorporating peeling detrainment into multiprocess models of geophysical systems, such as lakes, will lead to models that better describe inflow behaviour.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3