Abstract
This study investigates the effects of a pressure gradient on the wall pressure beneath equilibrium turbulent boundary layers. Excitation of the walls of a vehicle by turbulent boundary layers indeed constitutes a major source of interior noise and it is necessary to take into account the presence of a pressure gradient to represent the effect of the curvature of the walls. With this aim, large-eddy simulations of turbulent boundary layers in the presence of both mild adverse and mild favourable pressure gradients are carried out by solving the compressible Navier–Stokes equations. This method provides both the aeroacoustic contribution and the hydrodynamic wall-pressure fluctuations. A critical comparison with existing databases, including recent measurements, is conducted to assess the influence of a free stream pressure gradient. The analyses of wall-pressure spectral densities show an increase in the low-frequency content from adverse to favourable conditions, yielding higher integrated levels of pressure fluctuations scaled by the wall shear stress. This is accompanied by a steeper decay rate in the medium-frequency portion for adverse pressure gradients. No significant difference is found for the mean convection velocity. Frequency–wavenumber spectra including the subconvective region are presented for the first time in the presence of a pressure gradient. A scaling law for the convective ridge is proposed, and the acoustic domain is captured by the simulations. Direct acoustic emissions have similar features in all gradient cases, even if slightly higher levels are noted for boundary layers subjected to an adverse gradient.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献