Influence of the velocity field on scalar transport in gaseous transverse jets

Author:

Gevorkyan L.,Shoji T.,Peng W. Y.ORCID,Karagozian A. R.ORCID

Abstract

The present experiments explored the dynamical character of the gaseous jet injected flush into cross-flow for variable jet-to-cross-flow momentum flux ratios$J$(5, 12 and 41) and density ratios$S$(0.35 and 1.0). Contoured nozzle and straight pipe injectors were studied here, with the jet Reynolds number fixed at 1900 as other flow parameters were varied. Simultaneous acetone planar laser-induced fluorescence (PLIF) imaging and stereo particle image velocimetry (PIV) were used to study the relationships between scalar and velocity/vorticity fields, with a special focus on comparing PLIF-based extraction of scalar dissipation rates and local strain rates with PIV-based local strain rates in the upstream and downstream shear layers of the jet. There was remarkable similarity between the scalar and vorticity fields for the jet in cross-flow, spanning conditions for absolutely unstable upstream jet shear layers at low$J$or$S$values to conditions for convectively unstable shear layers for larger$J$, equidensity conditions (Megerianet al.,J. Fluid Mech., vol. 593, 2007, pp. 93–129; Getsingeret al.,Exp. Fluids, vol. 53, 2012, pp. 783–801). Proper orthogonal decomposition applied to both scalar and velocity fields revealed strengthening instabilities in both the upstream shear layer and in the jet’s wake as$J$was reduced. The simultaneous measurements allowed PLIF-extracted scalar dissipation rates and strain rates to be determined via a flamelet-like model and compared with PIV-extracted strain rates, each in the diffusion layer-normal direction. There was generally very good qualitative and quantitative agreement for these metrics in both the jet upstream and downstream shear layers for most flow conditions, with excellent correspondence to locations of shear layer vorticity roll up, although downstream shear layer strain rates in some cases showed lesser correspondence between PLIF- and PIV-based data. Such differences are shown to potentially result from diffusion and resolution effects as well as the influence of three-dimensional and transient effects which can be more significant in the lee side of the jet. Nevertheless, the present results reveal interesting dynamics and demonstrate the importance of strain fields in enhanced diffusion and transport phenomena.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3