Aerothermodynamic correlations for high-speed flow

Author:

Singh NarendraORCID,Schwartzentruber Thomas E.

Abstract

Heat flux and drag correlations are developed for high-speed flow over spherical geometries that are accurate for any Knudsen number ranging from continuum to free-molecular conditions. A stagnation point heat flux correlation is derived as a correction to the continuum (Fourier model) heat flux and also reproduces the correct heat flux in the free-molecular limit by use of a bridging function. In this manner, the correlation can be combined with existing continuum correlations based on computational fluid dynamics simulations, yet it can now be used accurately in the transitional and free-molecular regimes. The functional form of the stagnation point heat flux correlation is physics based, and was derived via the Burnett and super-Burnett equations in a recent article, Singh & Schwartzentruber (J. Fluid Mech., vol. 792, 2016, pp. 981–996). In addition, correlation parameters from the literature are used to construct simple expressions for the local heat flux around the sphere as well as the integrated drag coefficient. A large number of direct simulation Monte Carlo calculations are performed over a wide range of conditions. The computed heat flux and drag data are used to validate the correlations and also to fit the correlation parameters. Compared to existing continuum-based correlations, the new correlations will enable engineering analysis of flight conditions at higher altitudes and/or smaller geometry radii, useful for a variety of applications including blunt body planetary entry, sharp leading edges, low orbiting satellites, meteorites and space debris.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3