Turbulence radiation interaction in channel flow with various optical depths

Author:

Silvestri S.ORCID,Patel A.ORCID,Roekaerts D. J. E. M.,Pecnik R.ORCID

Abstract

The present work consists of an investigation of the turbulence radiation interaction (TRI) in a radiative turbulent channel flow of grey gas bounded by isothermal hot and cold walls. The optical thickness $\unicode[STIX]{x1D70F}$ of the channel is varied from 0.1 to 10 to observe different regimes of TRI. A high-resolution finite volume method for radiative heat transfer is employed and coupled with the direct numerical simulation (DNS) of the flow. The resulting effects of TRI on temperature statistics are strongly dependent on the considered optical depth. In particular, the contrasting role of emission and absorption is highlighted. For a low optical thickness the effect of radiative fluctuations on temperature statistics is low and causes the reduction of temperature variance through the dissipating action of emission. On the other hand, while increasing optical thickness to relatively high levels, the dissipation of temperature variance is balanced, at low wavenumbers in the turbulence spectrum, through the preferential action of absorption, which increases the large-scale temperature fluctuations. A significant rise in the effect of radiation on the temperature variance can be observed as a consequence of the reduction of radiative heat transfer length scales.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3