Abstract
Wetting of a planar solid substrate is investigated in the presence of a macroscopic particle in the complete wetting regime. A drop of silicone oil spreads on the substrate and its macroscopic edge is incident on the particle at the late stage of spreading. The drop–particle interaction is observed in detail by shadowgraph and interferometry. Although the spreading drop edge is pinned by the particle for a short time, a sharp acceleration occurs when the liquid starts wetting the extra surface area offered by the particle and forming a meniscus. This process yields a net gain in spreading speed. A theoretical model based on the classical wetting dynamics dictated by Cox’s law is developed. It predicts that the capillary energy of the meniscus gives rise to a rapid motion of the liquid edge, showing good agreement with the dynamics observed in the experiments.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献