Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data

Author:

Fullmer William D.ORCID,Liu Guodong,Yin Xiaolong,Hrenya Christine M.

Abstract

In this work the quantitative and qualitative ability of a kinetic-theory-based two-fluid model (KT-TFM) is assessed in a state of fully periodic sedimentation (fluidization), with a focus on statistically steady, unstable (clustered) states. The accuracy of KT-TFM predictions is evaluated via direct comparison to direct numerical simulation (DNS) data. The KT-TFM and DNS results span a rather wide parameter space: mean-flow Reynolds numbers on the order of 1 and 10, mean solid volume fractions from 0.1 to 0.4, solid-to-fluid density ratios from 10 to 1000 and elastic and moderately inelastic (restitution coefficient of 0.9) conditions. Data from both KT-TFM and DNS display a rich variety of statistically steady yet unstable structures (clusters). Instantaneous snapshots of KT-TFM and DNS demonstrate remarkable qualitative agreement. This qualitative agreement is quantified by calculating the critical density ratio at which the structure transitions from a chaotic, dynamic state to a regular, plug-flow state, with good overall comparisons. Further quantitative assessments of mean and fluctuating velocities show good agreement at high density ratios but weaker agreement at intermediate to low density ratios depending on the mean-flow Reynolds numbers and solid fractions. Deviations of the KT-TFM results from the DNS data were traced to a breakdown in one of the underlying assumptions of the kinetic theory derivation: high thermal Stokes number. Surprisingly, however, even though the low Knudsen number assumption, also associated with the kinetic theory derivation, is violated throughout most of the parameter space, it does not seem to affect the good quantitative accuracy of KT-TFM simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3