Streaming patterns in Faraday waves

Author:

Périnet Nicolas,Gutiérrez PabloORCID,Urra Héctor,Mujica Nicolás,Gordillo Leonardo

Abstract

Wave patterns in the Faraday instability have been studied for decades. Besides the rich wave dynamics observed at the interface, Faraday waves hide elusive flow patterns in the bulk – streaming patterns – which have not been studied experimentally. The streaming patterns are responsible for a net circulation in the flow, which is reminiscent of the circulation in convection cells. In this article, we analyse these streaming flows by conducting experiments in a Faraday-wave set-up using particle image velocimetry. To visualise the flows, we perform stroboscopic measurements to both generate trajectory maps and probe the streaming velocity field. We identify three types of patterns and experimentally show that identical Faraday waves can mask streaming patterns that are qualitatively very different. Next, we consider a three-dimensional model for streaming flows in quasi-inviscid fluids, whose key is the complex coupling occurring at all of the viscous boundary layers. This coupling yields modified boundary conditions in a three-dimensional Navier–Stokes formulation of the streaming flow. Numerical simulations based on this framework show reasonably good agreement, both qualitative and quantitative, with the velocity fields of our experiments. The model highlights the relevance of three-dimensional effects in the streaming patterns. Our simulations also reveal that the variety of streaming patterns is deeply linked to the boundary condition at the top interface, which may be strongly affected by the presence of contaminants.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. Observation of a Nonpropagating Hydrodynamic Soliton

2. Surface-wave damping in a circular cylinder with a fixed contact line

3. Numerical solution of the Navier-Stokes equations

4. Berechnung ebener periodischer Grenzschichtströmungen;Schlichting;Phys. Z,1932

5. On the theory of oscillatory waves;Stokes;Trans. Camb. Phil. Soc.,1847

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3