Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation

Author:

Pan Yulin,Yue Dick K. P.ORCID

Abstract

Experimental and numerical studies have shown that, with sufficient nonlinearity, the theoretical capillary-wave power-law spectrum derived from the kinetic equation (KE) of weak turbulence theory can be realized. This is despite the fact that the KE is derived assuming an infinite domain with continuous wavenumber, while experiments and numerical simulations are conducted in realistic finite domains with discrete wavenumbers for which the KE theoretically allows no energy transfer. To understand this, we first analyse results from direct simulations of the primitive Euler equations to elucidate the role of nonlinear resonance broadening (NRB) in discrete turbulence. We define a quantitative measure of the NRB, explaining its dependence on the nonlinearity level and its effect on the properties of the obtained stationary power-law spectra. This inspires us to develop a new quasi-resonant kinetic equation (QKE) for discrete turbulence, which incorporates the mechanism of NRB, governed by a single parameter $\unicode[STIX]{x1D705}$ expressing the ratio of NRB and wavenumber discreteness. At $\unicode[STIX]{x1D705}=\unicode[STIX]{x1D705}_{0}\approx 0.02$, the QKE recovers simultaneously the spectral slope $\unicode[STIX]{x1D6FC}_{0}=-17/4$ and the Kolmogorov constant $C_{0}=6.97$ (corrected from the original derivation) of the theoretical continuous spectrum, which physically represents the upper bound of energy cascade capacity for the discrete turbulence. For $\unicode[STIX]{x1D705}<\unicode[STIX]{x1D705}_{0}$, the obtained spectra represent those corresponding to a finite domain with insufficient nonlinearity, resulting in a steeper spectral slope $\unicode[STIX]{x1D6FC}<\unicode[STIX]{x1D6FC}_{0}$ and reduced capacity of energy cascade $C>C_{0}$. The physical insights from the QKE are corroborated by direct simulation results of the Euler equations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. Sandpile behaviour in discrete water-wave turbulence;Nazarenko;J. Stat. Mech.,2006

2. Partitioning of ensembles of weakly interacting dispersing waves in resonators into disjoint classes;Kartashova;Physica D,1990

3. Discrete and mesoscopic regimes of finite-size wave turbulence;Lvov;Phys. Rev. E,2010

4. Direct Numerical Simulations of Capillary Wave Turbulence

5. Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation;Dyachenko;Physica D,1992

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3